EconPapers    
Economics at your fingertips  
 

GHTnet: Tri-Branch deep learning network for real-time electricity price forecasting

Haolin Yang and Kristen R. Schell

Energy, 2022, vol. 238, issue PC

Abstract: A highly accurate electricity price prediction model is of the utmost importance for multiple power systems tasks, such as generation dispatch and bidding. Due to the liberalization of the electricity market, as well as high renewable penetration, the properties of electricity price time series are becoming more stochastic and complex. Traditional statistical methods and machine learning algorithms cannot model such volatile market conditions with high fidelity. In this paper, we propose a data-driven deep learning network (GHTnet) to capture the temporal distribution of real-time price data. A new CNN module, based on GoogLeNet, is developed to capture the high-frequency features of this data, while inclusion of time series summary statistics is shown to improve the forecasting of volatile price spikes. The deep learning model is developed and validated on real-time price time series from 49 generators in the New York Independent System Operator (NYISO), achieving significant performance improvements over that of state-of-the-art benchmark methods, with an average 17.34% improvement in MAPE.

Keywords: GRU; Deep learning; Electricity price forecasting; Time series features (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221023008
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221023008

DOI: 10.1016/j.energy.2021.122052

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221023008