A method for capacity prediction of lithium-ion batteries under small sample conditions
Meng Zhang,
Guoqing Kang,
Lifeng Wu and
Yong Guan
Energy, 2022, vol. 238, issue PC
Abstract:
Accurate life prediction of lithium-ion battery is very important for the safe operation of battery system. At present, the data-driven life prediction method is an effective method. However, it is difficult to obtain full life cycle data of long-life lithium batteries, which leads to low accuracy of prediction results. In addition, the degradation of lithium-ion batteries has different trends in different stages, the commonly used methods are insufficient to describe global time variables which make it difficult to adapt to changes in different stages of lithium-ion battery capacity degradation. To solve the above problems, the paper proposes a deep adaptive continuous time-varying cascade network based on extreme learning machines (CTC-ELM) under the condition of small samples. First, a virtual sample generation method based on multi-population differential evolution is proposed, which uses multi-distribution overall trend diffusion technology to adaptively determine the virtual sample range, and combines with the improved differential evolution algorithm to achieve small sample data amplification. Then, a new prediction network with CTC-ELM is constructed. Finally, it is verified on different data sets. Experiments show that the method proposed can effectively expand the sample set of lithium-ion batteries and achieve high accuracy in the estimation of lithium-ion battery capacity.
Keywords: Lithium-ion battery capacity estimation; Small sample learning; Time-varying; Extreme learning machine (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221023422
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221023422
DOI: 10.1016/j.energy.2021.122094
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().