EconPapers    
Economics at your fingertips  
 

Energy, exergy analysis of conceptually designed monochloromethane production process from hydrochlorination of methanol

Raju Gollangi and NagamalleswaraRao K

Energy, 2022, vol. 239, issue PA

Abstract: In this work, an integrated Exergetic evaluation was proposed to establish a better utilization of energy within the system and to achieve a sustainable environment. A simulation file was brought into being for the Synthesis of Monochloromethane (MCM) from hydrochlorination of methanol process with the ASPEN HYSYS simulator. An explorative analysis on thermodynamic derivatives like Energy and Exergy for the entire process subunits (and/or components) was carried out, which includes the quantity of Energy loss, exergy destruction and exergy efficiency among all process components. From the calculated figures in all of them, the reactor followed by the absorber has maximum exergy destruction of 138 MW and 29 MW respectively. Moreover, an observation found that exergy destruction of 266 MW was engaged with Heat Exchanger Network (HEN) i.e., 47.5 % of total MCM pant destruction. Retrofit design is the possible way to reduce the exergy destruction rate employed with HEN without any interruption to the properties of process streams. This retrofit design confines exergy destruction to 187 MW which is 38.8 % of total process destruction. The total energy, exergy efficiencies are 85.45 % and 93.9 % respectively.

Keywords: Energy loss; Exergy destruction; Heat exchanger network retrofit; Monochloromethane production (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422102106X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:239:y:2022:i:pa:s036054422102106x

DOI: 10.1016/j.energy.2021.121858

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:239:y:2022:i:pa:s036054422102106x