Co-generation ability investigation of the novel structured PVT heat pump system and its effect on the “Carbon neutral” strategy of Shanghai
Jian Yao,
Pengbo Dou,
Sihang Zheng,
Yao Zhao,
Yanjun Dai,
Junjie Zhu and
Vojislav Novakovic
Energy, 2022, vol. 239, issue PA
Abstract:
A novel structured PVT (photovoltaic-thermal) module was proposed, manufactured, and adopted to form a solar assisted PVT heat pump system to realize high-efficiency co-generation in building sectors. The experiment apparatuses were set and tested to evaluate the thermal, electrical, hydraulic behavior of the proposed PVT module. Moreover, the temperature uniformity control ability of the novel structured PVT module was conducted in comparison with the single PV module. For instance, the operating temperature difference of the PVT module could be controlled within 0.7 °C while it is 0.9 °C of the single PV module. The average experimental electrical and thermal efficiencies are 17.93% and 109.4%, respectively, which show a significant improvement in comprehensive solar energy utilization efficiency compared with other conventional PVT technologies, and this technology would have a positive effect on the “Carbon neutral” strategy of Shanghai. The overall annual CO2 emission for electricity and domestic hot water supplement of the proposed solar assisted PVT heat pump system is 565.8 kgCO2, which is only 11.41% of the traditional supply technology (grid power + electrical water heater). Moreover, a 1 m2 PVT system could fix 3111.6 kgCO2 which is 53.2% higher than that of the PV system after 20 years.
Keywords: Novel structured PVT module; Solar assisted heat pump; Co-generation ability; Temperature control; Performance improvement; Carbon neutral (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221021113
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:239:y:2022:i:pa:s0360544221021113
DOI: 10.1016/j.energy.2021.121863
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().