The maximum efficiency enhancement of a solar-driven graphene-anode thermionic converter realizing total photon reflection
Tao Liang,
Cong Hu,
Tong Fu,
Shanhe Su and
Jincan Chen
Energy, 2022, vol. 239, issue PA
Abstract:
Thermionic converters show highly efficient thermoelectric conversion performance. Compared to metals, graphene materials exhibit excellent optical and electrical properties. A novel solar-driven graphene-anode thermionic converter is proposed, in which a photon reflector is attached to the graphene-anode to reduce dissipation. Expressions for the power output density and efficiency of the system are derived by considering the major irreversible dissipation. The performance characteristics of the system are comprehensively evaluated, including the effects of the voltage output, current density, area ratio of the absorber to the cathode, and solar concentration factor. The results show that the solar-driven graphene-anode thermionic converter with a photon reflector achieves better performance than the case without reflectors, and outperforms the solar-driven metal-anode thermionic converter. Under the same conditions of 3000 solar concentrations, the maximum power output density and efficiency of the proposed system attain 777.2 Wcm−2 and 44.56%, which increase 24.33% and 115.2%, respectively, compared to those of the solar-driven metal-anode thermionic converter. Besides, the maximum efficiency and power output density of the system at different concentrations and corresponding optimal values of key parameters are calculated. The optimum operating region of the proposed system is determined and the optimum selection criteria of key parameters are provided.
Keywords: Graphene-anode thermionic converter; Total photon reflection; Performance evaluation; Parameter optimization; Maximum efficiency enhancement (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221022027
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:239:y:2022:i:pa:s0360544221022027
DOI: 10.1016/j.energy.2021.121954
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().