EconPapers    
Economics at your fingertips  
 

Combustion characteristic of premixed H2/air in the micro cavity combustor with guide vanes

Wei Gao, Yunfei Yan, Kaiming Shen, Lujing Huang, Ting Zhao and Bo Gao

Energy, 2022, vol. 239, issue PA

Abstract: Micro-scale combustion is facing the problems of ignition difficulty, combustion instability, and low combustion efficiency. Therefore, it is necessary to improve the combustion characteristics in micro-combustor to expand the application range of micro-combustor. Based on the traditional cavity combustor (TCC), a cavity combustor with guide vanes (CCGV) was constructed to further strengthen the effect of the cavity. The combustion characteristics of TCC and CCGV at different inlet velocities and equivalence ratios were compared and analyzed. And the combustion characteristics of CCGV were researched under different guide vane geometries. The temperature and the area of high-temperature zones in the cavity of CCGV are significantly higher and bigger than the TCC respectively. The cavity of CCGV has a better preheating and ignition effect than TCC. When the inlet velocity is 8 m/s, the maximum temperature in cavities of CCGV is 326 K higher than TCC. When the equivalence ratio increases from 0.6 to 1.2, the blow-off limits of TCC and CCGV increase from 3 m/s and 33 m/s to 14 m/s and 121.5 m/s, respectively. The CCGV with S/L3 = 0.12/0.4 and α = 45° has a better practical application value. When the inlet velocity is 14 m/s, compared with S/L3 = 0.12/0.4, the combustion efficiency of S/L3 = 0.15/0.5, S/L3 = 0.18/0.6 and S/L3 = 0.21/0.7 increases by 1.21 %, 2.25 % and 2.61 %, respectively, while the pressure loss increases by 3.79 %, 5.70 % and 13.68 %, respectively. When the inlet velocity increases are 20 m/s, the combustion efficiency and is 74.46 %, 87.97 %, and 87.51 %, respectively. The pressure loss of α = 60° is 4.35 % higher than that of α = 45°.

Keywords: Micro-combustor; Cavity; Guide vanes; Combustible limit; Stable combustion (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221022234
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:239:y:2022:i:pa:s0360544221022234

DOI: 10.1016/j.energy.2021.121975

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:239:y:2022:i:pa:s0360544221022234