Enhanced gas removal and cell performance of a microfluidic fuel cell by a paper separator embedded in the microchannel
Qiao Lan,
Dingding Ye,
Xun Zhu,
Rong Chen and
Qiang Liao
Energy, 2022, vol. 239, issue PB
Abstract:
The generated gas bubbles in microfluidic fuel cells (MFCs) cover the active surface area of the electrode and greatly limit the cell performance. In this study, a feasible approach is proposed to effectively accelerate bubbles removal and enhance cell performance by embedding a paper separator in the middle of the microchannel. Visualization of bubble behaviors and the corresponding electrochemical measurements are performed to investigate the effect of bubbles on the cell performance. Periodical process of the bubble growth and removal leads to the fluctuation in the current density of the MFC. The rapid gas removal and the low ohmic resistance are observed after embedding a layer of filter paper in the microchannel, causing improved fuel transfer and smaller ohmic loss. Although the current density fluctuates more frequently, the fluctuation amplitude decreases and the cell performance is enhanced. Compared with the MFC without paper separator, the maximum power density and the limiting current density of the MFC with paper separator is increased by 25.2% and 130%, respectively. Moreover, the cell performance is improved with increasing the flow rate of reactant solution and the peak power density achieves 25.9 mW cm−2 under flow rate of 1500 μL min−1.
Keywords: Microfluidic fuel cell; Laminar flow; Paper separator; Bubble removal; Performance (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422102346X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:239:y:2022:i:pb:s036054422102346x
DOI: 10.1016/j.energy.2021.122098
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().