Performance of proton exchange membrane fuel cells with honeycomb-like flow channel design
Shuanyang Zhang,
Shun Liu,
Hongtao Xu,
Gaojie Liu and
Ke Wang
Energy, 2022, vol. 239, issue PB
Abstract:
A honeycomb-like flow channel was proposed and investigated for the performance of proton exchange membrane fuel cells (PEMFCs). The effects of various thicknesses and porosities of the gas diffusion layer (GDL) on the honeycomb-like flow channel were studied. Compared with parallel and serpentine flow channels, the honeycomb-like flow channel exhibited the lowest oxygen non-uniformity value of 0.59 at 0.4 V, and the pressure drop was 6.9 times lower than that of the serpentine flow channel. The current density was 8034.9 A/m2, which was 14.0% and 10.4% higher than that of the parallel and serpentine flow channels. For a porosity of 0.4, the decrease in GDL thickness from 0.58 to 0.38 mm for the honeycomb-like flow channel facilitated oxygen diffusion, and the current density increased from 7717.2 to 8034.9 A/m2; the oxygen mass fraction gradually increased at the cathode channel but decreased at the center of the honeycomb-like structure. At a thickness of 0.38 mm, the porosity increased from 0.2 to 0.6, leading to a decrease in the oxygen non-uniformity value from 0.89 to 0.42. For a porosity of 0.6, the current density was 8787 A/m2, which was 60% and 9.4% greater when compared with the porosities of 0.2 and 0.4.
Keywords: Hydrogen; Proton exchange membrane fuel cell; Honeycomb-like flow channel; Performance improvement (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221023501
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023501
DOI: 10.1016/j.energy.2021.122102
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().