Optimize heat prosumers' economic performance under current heating price models by using water tank thermal energy storage
Haoran Li,
Juan Hou,
Zhiyong Tian,
Tianzhen Hong,
Natasa Nord and
Daniel Rohde
Energy, 2022, vol. 239, issue PB
Abstract:
Due to heat prosumers' dual roles of heat producer and heat consumer, the future district heating (DH) systems will become more flexible and competitive. However, the current heating price models have not yet supported the reverse heat supply from prosumers to the central DH system, which means the prosumers would gain no economic benefit from supplying heat to the central DH system. These unidirectional heating price models will reduce interest in prosumers, and thus hinder the promotion of prosumers in DH systems. This study aimed to optimize prosumers' economic performance under the current heating price models by introducing water tank thermal energy storage (WTTES). A dynamic optimization problem was formulated to explore prosumers' economic potentials. The size parameter of WTTESs was swept in prosumers to obtain the optimal storage size considering the trade-off between the payback period and the heating cost saving. The proposed method was tested on a campus DH system in Norway. The results showed that the prosumer's annual heating cost was saved up to 9%, and the investment of WTTES could be recovered in less than ten years. This study could provide guidelines on improving prosumers' economic performance and promote the development of prosumers during the transformation period of DH systems.
Keywords: 4th generation district heating; Thermal energy storage; Distributed heat sources; Heating price model; Peak load; Mismatch problem (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221023513
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023513
DOI: 10.1016/j.energy.2021.122103
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().