Identification of energy wastes through sound analysis in compressed air systems
Dorota Czopek,
Dominik Gryboś,
Jacek Leszczyński and
Jerzy Wiciak
Energy, 2022, vol. 239, issue PB
Abstract:
This paper proposes a new approach which is able to identify energy losses of compressed air in any CAS based on acoustic energy emission. By means of a previously validated mathematical model, the inverse problem that finds air power lost over time from the sound generated by air expansion is solved. The developed method is tested in a laboratory scale while a tank is being emptied through artificial holes with different diameters in a pipe. Two supplying cases: continuous supply of compressed air to the tank and single filling of the tank are considered. All measurements are made in an anechoic chamber to record pure air expansion noise without any background sounds. The analysis shows that over certain range of leakage hole diameters there is a dependence between the generated sound pressure level and the mass flow and, therefore, the power loss. Thus, acoustic monitoring could be effective in leakage diagnosing in CASs, which is important for production energy efficiency management.
Keywords: Energy efficiency compressed air systems leakage noise SPL measurement Energy wastes air expansion (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221023707
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023707
DOI: 10.1016/j.energy.2021.122122
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().