Wind-capture-accelerate device for performance improvement of vertical-axis wind turbines: External diffuser system
Limin Kuang,
Jie Su,
Yaoran Chen,
Zhaolong Han,
Dai Zhou,
Kai Zhang,
Yongsheng Zhao and
Yan Bao
Energy, 2022, vol. 239, issue PB
Abstract:
The unsatisfactory power performance hinders the development of vertical-axis wind turbines (VAWTs). Installing a wind-capture-accelerate device outside the VAWT is one possible way to alleviate this situation. In the current study, an external diffuser system is designed to improve the power performance of the VAWT. The three-dimensional improved delayed detached-eddy simulation is employed to predict the aerodynamics. First, the power performance and aerodynamic loads of the VAWT equipped with different types of basic diffusers are compared at the optimal tip speed ratio (TSR) of 1.5. Then, a stepwise parametric analysis of the effects of size parameters, i.e., projected length, 1 ≤ L1/D ≤ 2.5 and diffusion angle, 10° ≤ θ1 ≤ 30°, is performed in various operating conditions, i.e., 0.4 ≤ TSR ≤2.5. Afterwards, the effects of the rear flange and anterior ejector on the behaviors of the basic diffuser are investigated, and the flow structures around the VAWT are analyzed. Finally, an application prospect evaluation of the system is conducted. The results show that the enclosed type basic diffuser with curved inner surface can significantly improve the power performance of the VAWT at moderate and high TSRs. The aerodynamic loads on the blade are enlarged and present more fluctuations. The power coefficient of the VAWT at TSR = 1.5 is increased by 51.73% when L1/D = 2 and θ1 = 20°. The flange and ejector can further enhance the capability of the basic diffuser by increasing the pressure difference and stabilizing the flow field. It is concluded that the external diffuser system would have potential applications in specific urban areas.
Keywords: Vertical-axis wind turbine; External diffuser system; Power performance; Parametric analysis; Improved delayed detached-eddy simulation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221024440
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221024440
DOI: 10.1016/j.energy.2021.122196
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().