EconPapers    
Economics at your fingertips  
 

Visualization of interactions between depressurization-induced hydrate decomposition and heat/mass transfer

Xuan Kou, Jing-Chun Feng, Xiao-Sen Li, Yi Wang and Zhao-Yang Chen

Energy, 2022, vol. 239, issue PC

Abstract: Visual evidences to understand the interactions between hydrate decomposition and heat/mass transfer are currently lacking. This study proceeds from the hydrate morphology to visualize the interactions between depressurization-induced hydrate decomposition and heat/mass transfer from different scales. Reactor-scale hydrate distribution evolution shows that the dominant influencing factor of hydrate decomposition transforms from heat transfer to mass transfer. More importantly, pore-scale visual evidences suggest that the mass transfer of gas shows significant effects on hydrate morphology evolution. Specifically, the limited gas diffusion in liquid phase could lead to the hydrate morphology evolution from patchy pore-filling to “grain-bridging” during hydrate decomposition. The combination of grain-bridging hydrate together with the water layer that wraps the hydrate is termed as “hydrate bridge” in this work. It is also worth noting that the grain-bridging hydrate could accelerate fluid flow in pores according to our seepage simulation results. These findings provide visual evidences for variations in physical properties of hydrate-bearing sediments during hydrate decomposition. Since physical properties of hydrate-bearing sediments play important roles in hydrate decomposition, the hydrate morphology evolution characteristics analyzed here are valuable for hydrate exploitation in field tests.

Keywords: Hydrate dissociation; Depressurization; Heat and mass transfer; Hydrate morphology; X-CT (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221024786
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:239:y:2022:i:pc:s0360544221024786

DOI: 10.1016/j.energy.2021.122230

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:239:y:2022:i:pc:s0360544221024786