EconPapers    
Economics at your fingertips  
 

Combustion oscillation characteristics of a supersonic ethylene jet flame using high-speed planar laser-induced fluorescence and dynamic mode decomposition

Jiangbo Peng, Long Gao, Xin Yu, Fei Qin, Bing Liu, Zhen Cao, Guohua Wu and Minghong Han

Energy, 2022, vol. 239, issue PD

Abstract: Flame dynamics and combustion oscillation are complex problems in propulsion systems. In this study, the combustion oscillation characteristics of a supersonic ethylene jet flame in a hot coflow were investigated utilizing a 5 kHz high-speed hydroxyl planar laser-induced fluorescence (OH-PLIF) technique and an advanced postprocessing method, namely, dynamic mode decomposition (DMD). A PLIF system equipped with a large laser sheet was used to collect the dynamic development process of the jet flame. An ethylene jet flow was burned at a hot coflow temperature of 1900 K at different Mach numbers (Mach 0.55–1.6). The dynamic evolution of flame microstructures was clearly obtained. The local extinction events and flame area distribution in the flame were statistically analyzed to characterize the instability of the jet flame. The results indicated that flame instability was enhanced with increasing Mach number, but the jet velocity did not affect the global flame oscillation frequency. Based on DMD analysis, the spatiotemporal three-dimensional oscillation characteristics of the jet flame were quantified. The DMD results indicated that during different time periods, the jet flame is dominated by coherent structures with different frequencies. For supersonic flow, increased jet velocity might lead the dominant mode frequency shift to a higher level.

Keywords: Supersonic jet burner; High-speed PLIF; Ethylene jet flame; Dynamic mode decomposition; Flame oscillation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221025780
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:239:y:2022:i:pd:s0360544221025780

DOI: 10.1016/j.energy.2021.122330

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:239:y:2022:i:pd:s0360544221025780