Numerical study on performance of a hybrid indirect evaporative cooling heat recovery heat pump ventilator as applied in different climatic regions of China
Jue Wang,
Jun Lu,
Wuyan Li,
Cheng Zeng and
Fenghao Shi
Energy, 2022, vol. 239, issue PE
Abstract:
Indirect evaporative cooling (IEC) and heat recovery are key technologies for decarbonising heating, ventilation, and air-conditioning (HVAC) while their performance is affected by the ambient environment. This paper presents a numerical investigation of a recently developed hybrid ventilator integrating the IEC and heat recovery. A TRNSYS-Matlab model was used to evaluate the ventilator's adaptability (operational and energy performance) in a public building at five typical cities in China. According to the validated model analysis, the ventilator shows a superior adaptability to the temperate region, with the lowest annual energy use at 96.70 kWh/m2 and the minimum energy input of the auxiliary source at 39.29% of the total energy use. The hybrid ventilator's adaptability is followed by the hot summer cold winter region and cold region where the ventilator covers 85% of the total heating/cooling loads in transition seasons. The severe cold region and hot summer warm winter region requires a significant auxiliary energy use for the stable indoor air parameters, which consumes 70.64% and 60.1% of the annual energy use, respectively. Future works are to improve the performance of the IEC and heat pump unit in the two climatic regions for better adaptability of the ventilator.
Keywords: Heat recovery heat pump; Indirect evaporative cooling; Ventilator; Energy performance; Adaptability (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221026803
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221026803
DOI: 10.1016/j.energy.2021.122431
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().