EconPapers    
Economics at your fingertips  
 

Optimal operation of Concentrating Solar Collector fields using exergy-based hierarchical control

Diogo Ortiz Machado, Gustavo Artur Andrade, Julio Elias Normey-Rico and Carlos Bordons

Energy, 2022, vol. 239, issue PE

Abstract: This work develops an exergy-based hierarchical control for the ACUREX solar collector field. The objective is to simulate and to determine the optimal control operation based on exergy. The control structure uses a nonlinear exergy optimization layer that sends the steady-state optimal temperature set-point to a nonlinear Model Predictive Control layer. The simulations show that the control can track references, reject disturbances, and optimize the production considering process intermittency (start-up, operation, shut-down), operational constraints, and pump power. The study compares the proposed control to common literature approaches such as energy-based and maximum outlet temperature reference generation. The main findings are: (i) the proposed exergy-based controller design gives an enhanced second law of thermodynamics performance independently of solar collector process parameters; (ii) despite modest energy production and efficiency advantages (1%) on ACUREX solar field, the real application of the control law does not imply any new investments or hardware changes; (iii) seeking the maximum temperature is a simple, quasi-optimal strategy for the ACUREX solar field; and (iv) energy-based optimization is not a suitable strategy for ACUREX solar field from the second law of thermodynamics (exergy) perspective.

Keywords: Hierarchical control; Exergy; Model predictive control; Concentrating solar collector (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221027110
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221027110

DOI: 10.1016/j.energy.2021.122462

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221027110