Effect of variable compression ratio and equivalence ratio on performance, combustion and emission of hydrogen port injection SI engine
Jayashish Kumar Pandey and
G.N. Kumar
Energy, 2022, vol. 239, issue PE
Abstract:
The present study includes an experimental investigation of the performance, combustion, and emission parameters of a hydrogen port fueled SI engine under wide-open throttle. The compression ratio (CR) is varied from 10 to 15, equivalence ratio (φ) from 0.4 to 1.0, and speed from 1400RPM to 1800RPM. The ignition timing is maintained at 20° before the top dead center. The brake thermal efficiency increases by nearly 10% from CR10 to CR15, and it also increased by 13.7% by changing φ from 0.4 to 0.9. Similarly, BP increases in the same fashion. The combustion enhances with an increase in peak pressure by increasing CR from 10 to 15 and φ from 0.4 to 0.9; however, φ 1.0 exhibits a negative trend. However, the NOX emission increases continuously with CR and φ, and so as the exhaust gas temperature. The carbon-based emissions are negligible, and volumetric efficiency decreases with φ and increases with CR.
Keywords: Hydrogen; Variable compression ratio; Variable equivalence ratio; Wide open throttle (WOT); Performance; Combustion (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221027171
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221027171
DOI: 10.1016/j.energy.2021.122468
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().