EconPapers    
Economics at your fingertips  
 

Properties and performance of hybrid suspensions of MPCM/nanoparticles for LED thermal management

Songping Mo, Jiarong Ye, Lisi Jia and Ying Chen

Energy, 2022, vol. 239, issue PE

Abstract: Mono suspensions of either nanoparticles or microencapsulated phase change material (MPCM) capsules (microcapsules) have shown superior thermophysical properties and heat transfer performance for thermal management. In this study, hybrid suspensions of nanoparticles and MPCM particles were prepared to integrate the advantages of both materials. The properties of hybrid MPCM/nanoparticle suspensions were investigated in terms of dispersion stability and thermal conductivity, and the cooling performance of the hybrid suspensions on thermal management of light-emitting diodes (LED) were studied. The experimental results show that the addition of graphene oxide, titanium dioxide (TiO2), and aluminum oxide (Al2O3) nanoparticles effectively improved the dispersion stability of the MPCM suspension (MPCMS). The thermal conductivity of the MPCMS was enhanced by the TiO2 and Al2O3 nanoparticles. The hybrid MPCM/Al2O3 suspensions, which exhibited remarkable improvement in both dispersion stability and thermal conductivity, were applied to an LED thermal management system. The results show that the cooling performance of the hybrid suspensions was enhanced compared with that of the mono suspensions of MPCM or nanoparticles. The optimal concentration of the hybrid suspension was obtained. The effects of inlet temperature of the hybrid suspensions on the cooling performance were studied.

Keywords: Thermal management; Hybrid suspension; Phase change material; Microcapsule; Nanoparticle (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221028991
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221028991

DOI: 10.1016/j.energy.2021.122650

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221028991