Energy–exergy optimization of comminution
Sergio Alvarado,
Jorge Algüerno,
Hein Auracher and
Aldo Casali
Energy, 1998, vol. 23, issue 2, 153-158
Abstract:
The comminution process has exceedingly low efficiency because it is highly irreversible. An outline of energy analysis for comminution is presented. The application refers to an ore-processing plant, which consists of a series of crushers feeding a traditional ball mill that delivers products to a downstream metallurgical process. For optimization, the design characteristics are fixed, i.e. decision variables can only be operational parameters. The chosen decision variable is the size of the feed (F) to the mill. In practice, the mill operator may control the feed granulometry and keep the product size constant by using a constant ball charge. The objective cost function is the sum of energy costs at the crusher and mill, which depend only on F. The exergy consumption of the crusher and mill are evaluated using the Bond correlation, including pertinent correction factors. Optimization leads to a 10% saving in overall energy costs.
Date: 1998
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544297000613
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:23:y:1998:i:2:p:153-158
DOI: 10.1016/S0360-5442(97)00061-3
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().