Development and verification of a dynamic analysis model for floating offshore contra-rotating vertical-axis wind turbine
Hyebin Lee,
Sunny Kumar Poguluri and
Yoon Hyeok Bae
Energy, 2022, vol. 240, issue C
Abstract:
Vertical axis wind turbines (VAWT) have a lower center of mass because the mechanical systems are placed at the bottom of the tower. This leads to more stable motions in the offshore environment However, the effect of torque leads to continuous loading of the tower, constant platform motions, and increased mooring tension. For this reason, a contra-rotating VAWT is adopted to mitigate the structural loads and platform motions induced by the counterbalanced torque produced by the two rotors. Initially we developed and validated an integrated analysis tool for floating VAWTs and extended to account for the contra-rotating rotor. Finally, the loads and motions of the contra-rotating VAWT are assessed using the developed tool. The results indicated that the contra-rotating VAWT had better structural loads and, in case of the floating model, the platform motions were smaller, and the mooring tension was lower. A land-based contra-rotating VAWT with blade length and rotor radius greater than 48.5 m and 54 m can achieve better performance compared to conventional VAWT with 80 m and 39 m respectively. Consequently, notwithstanding the reduced aerodynamic power, the decreased structural responses of the contra-rotating VAWT imply that its fatigue loads, would be lower compared to those of the conventional VAWT.
Keywords: Floating offshore wind turbine (FOWT); Vertical-axis wind turbine (VAWT); Contra-rotating; Coupled analysis; Dynamic analysis; Numerical simulation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221027419
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:240:y:2022:i:c:s0360544221027419
DOI: 10.1016/j.energy.2021.122492
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().