Electrical and thermal optimization of energy-conversion systems based on thermoelectric generators
Giovanni Pennelli,
Elisabetta Dimaggio and
Massimo Macucci
Energy, 2022, vol. 240, issue C
Abstract:
Thermoelectric generator devices, which convert heat directly into electrical power, have a great potential for energy scavenging and green energy harvesting applications. The exploitation of such a potential requires a proper design of both the electrical circuit that drives the electrical load and the thermal part, in particular when the thermoelectric generator is coupled with the hot and cold heat sources through thermal resistances. We propose a straightforward approach to take into account both thermal and electrical issues, by means of an equivalent electric circuit model that can be solved with widely available simulator programs, such as SPICE. Our approach is shown to be effective for supporting the design and optimization of thermoelectric systems from the point of view of the output power and of the efficiency. In particular, with our model we are able to point out that thermal resistance matching optimizes the thermal fluxes only in first approximation: for a particular case study we find that the optimal module thermal resistance is 20% larger than the contact resistance. We also show that the electrical matching for the maximum output power must be carefully considered for each particular thermoelectric module and load condition.
Keywords: Thermoelectric generator; Thermoelectric cooler; Efficiency; Output power optimization (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221027432
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:240:y:2022:i:c:s0360544221027432
DOI: 10.1016/j.energy.2021.122494
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().