EconPapers    
Economics at your fingertips  
 

Machine learning approach to uncovering residential energy consumption patterns based on socioeconomic and smart meter data

Wenjun Tang, Hao Wang, Xian-Long Lee and Hong-Tzer Yang

Energy, 2022, vol. 240, issue C

Abstract: The smart meter data analysis contributes to better planning and operations for the power system. This study aims to identify the drivers of residential energy consumption patterns from the socioeconomic perspective based on the consumption and demographic data using machine learning. We model consumption patterns by representative loads and reveal the relationship between load patterns and socioeconomic characteristics. Specifically, we analyze the real-world smart meter data and extract load patterns by clustering in a robust way. We further identify the influencing socioeconomic attributes on load patterns to improve our method's interpretability. The relationship between consumers' load patterns and selected socioeconomic features is characterized via machine learning models. The findings are as follows. (1) Twelve load clusters, consisting of six for weekdays and six for weekends, exhibit a diverse pattern of lifestyle and a difference between weekdays and weekends. (2) Among various socioeconomic features, age and education level are suggested to influence the load patterns. (3) Our proposed analytical model using feature selection and machine learning is proved to be more effective than XGBoost and conventional neural network model in mapping the relationship between load patterns and socioeconomic features.

Keywords: Consumption pattern; Socioeconomic; Smart meter; Clustering; Feature selection; Machine learning (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221027493
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:240:y:2022:i:c:s0360544221027493

DOI: 10.1016/j.energy.2021.122500

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:240:y:2022:i:c:s0360544221027493