Heat pipe/phase change material thermal management of Li-ion power battery packs: A numerical study on coupled heat transfer performance
Ziyu Leng,
Yanping Yuan,
Xiaoling Cao,
Chao Zeng,
Wei Zhong and
Bo Gao
Energy, 2022, vol. 240, issue C
Abstract:
To improve the thermal management performance of Li-ion power battery packs, this paper investigates HP/PCM (heat pipe/phase change material) coupled thermal management (TM). The significant purposes are to reveal internal coupled heat transfer mechanism, and propose a critical application range of coupled TM. To achieve this goal, lumped parameter method and finite difference method are adopted to build the mathematical modelling. Based on the simulation, the superiority of temperature control in coupled TM can be confirmed, and its internal heat flux distribution is calculated to reveal the principle of temperature control effects. Further parametric study is carried out to analyze their variation trend over different working conditions, whereupon both coupled heat transfer mechanism and critical application range are obtained. Results demonstrate that coupled TM achieves lower battery surface temperature and longer control time compared with single HP and PCM TM, respectively. It also shows that internal coupled heat flux distribution transits from PCM-dominated to HP-dominated, and ultimately almost depends on HP. Furthermore, based on the data of parametric study, coupled TM plays superiority when h < 12 W/m2∙K and 0.1 W/(m∙K) < kPCM ≤ 5 W/(m∙K) under the external condition of this study.
Keywords: Thermal management; Heat pipe; Phase change material; Li-ion power battery packs (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221030036
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:240:y:2022:i:c:s0360544221030036
DOI: 10.1016/j.energy.2021.122754
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().