Data-centric or algorithm-centric: Exploiting the performance of transfer learning for improving building energy predictions in data-scarce context
Cheng Fan,
Yutian Lei,
Yongjun Sun,
Marco Savino Piscitelli,
Roberto Chiosa and
Alfonso Capozzoli
Energy, 2022, vol. 240, issue C
Abstract:
Data-driven methods have gained increasing popularity due to their high-convenience and high-accuracy in practice. Considering the wide discrepancies in data availability across different buildings, transfer learning can be applied to improve the feasibility and robustness of data-driven solutions for individual buildings. In principle, the performance of transfer learning can be enhanced from two perspectives, i.e., the algorithm-centric and data-centric perspectives. The algorithm-centric perspective highlights the adoption of advanced learning algorithm, while the data-centric perspective emphasizes the preparation of proper data for cross-building sharing. At present, there is a lack of studies to systematically compare the performance of the above-mentioned strategies for building energy predictions in a broad range of building types. This study, therefore, investigates the actual performance of transfer learning in data-scarce context, i.e., target buildings have insufficient/extremely limited operational data for model calibrations and domain adaptations. Various transfer learning methods, using different learning algorithms and source data utilization schemes, have been developed and applied for performance comparisons. Comprehensive data experiments have been designed using 600 actual buildings to draw statistically significant conclusions. The results are helpful for quantifying the behavioral patterns of transfer learning, and providing practical guidelines to develop cost-effective data-driven solutions for building energy predictions.
Keywords: Transfer learning; Building energy predictions; Data scarcity; Data science; Predictive modeling (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221030243
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:240:y:2022:i:c:s0360544221030243
DOI: 10.1016/j.energy.2021.122775
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().