Influence of supercritical CO2 exposure on water wettability of shale: Implications for CO2 sequestration and shale gas recovery
Chao Qin,
Yongdong Jiang,
Junping Zhou,
Shuangying Zuo,
Shiwan Chen,
Zhengjie Liu,
Hong Yin and
Ye Li
Energy, 2022, vol. 242, issue C
Abstract:
The wettability of reservoir rocks is considered to be closely related to fluid distribution and CO2 geo-storage (CGS) security after injecting CO2 into reservoir. To investigate the influence of supercritical CO2 (ScCO2) injection on water wettability of shale, a sessile drop method was used to measure water contact angles of shale samples collected from Sichuan Basin (marine) and Ordos Basin (continental) at different ScCO2 exposure time and pressure. In addition, X-ray diffraction (XRD) and low-pressure N2 adsorption (LP-NA) were performed to evaluate the variations of mineral compositions and pore structure of shale. Results indicate that shale-water contact angles generally increased (from 22.74% to 43.94%) after ScCO2 exposure, which is primarily caused by the decrease of clay minerals and carbonates in shale. The water wettability of shale weakened after ScCO2 exposure, indicating that the interaction force between shale and water molecules changed, which may have reduced the resistance of water to flow in pores and fractures of shale, inferring that the alterations of shale water wettability after ScCO2 injection is beneficial to gas seepage in pore channels, but may exert a negative influence on CGS stability. This study provides a theoretical reference for CO2 sequestration and CO2-enhanced shale gas recovery (CS-ESGR).
Keywords: Shale; Supercritical carbon dioxide; Water wettability; Shale gas recovery; CO2 geo-storage (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221028000
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:242:y:2022:i:c:s0360544221028000
DOI: 10.1016/j.energy.2021.122551
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().