Process optimization, exergy and economic analysis of boil-off gas re-liquefaction processes for LNG carriers
Xuewen Cao,
Jian Yang,
Yue Zhang,
Song Gao and
Jiang Bian
Energy, 2022, vol. 242, issue C
Abstract:
A re-liquefier based on the reverse Brayton cycle is the first choice for the re-liquefaction process owing to its compactness, simplicity, and safety. However, due to the low efficiency of the heat exchangers, the energy consumption of the re-liquefaction process is relatively high. Therefore, a novel cascade nitrogen expansion re-liquefaction process with high heat exchange efficiency is proposed and compared with the parallel expansion process. In the designed process, the condensation and subcooling stages of the boil-off gas (BOG) are performed in different heat exchangers. The performance improvement of the designed process is analyzed using the Aspen HYSYS and the genetic algorithm is used to optimize the processes. The optimization results show that the specific energy consumption (SEC) and exergy loss rate of the designed process are 0.727 kWh/kgLNG and 148.14 kW, which are 11.7% and 16.7% lower than those of the reference process, respectively. Moreover, the exergy efficiency (EXE) of the designed process is 0.352, which is 13.2% higher than that of the reference process. Because of the higher EXE and lower refrigerant demand, the designed process saves 7.2% of the total annual costs consisting of annual capital and operating costs compared with those of the reference process.
Keywords: Reverse Brayton cycle; BOG re-liquefaction; Composite curve analysis; Exergy analysis; Economic analysis (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221031960
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:242:y:2022:i:c:s0360544221031960
DOI: 10.1016/j.energy.2021.122947
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().