EconPapers    
Economics at your fingertips  
 

Preparation and thermal properties of palmitic acid @ZnO/Expanded graphite composite phase change material for heat storage

Kai Wang, Ting Yan, Y.M. Zhao, G.D. Li and W.G. Pan

Energy, 2022, vol. 242, issue C

Abstract: A novel palmitic acid @ZnO/Expanded graphite composite phase change material (PCM) was prepared. Palmitic acid (PA) was selected as phase change material and ZnO/Expanded Graphite as supporting material. Expanded graphite (EG), which was used to improve the thermal conductivity of PCM, was chemically modified using ZnO derived from ZIF-8. ZnO derived from ZIF-8 has abundant pore structure and large specific surface area. The structure of ZnO/EG additive was characterized by SEM analyzing method. The prepared ZnO/EG has a three-dimensional coupled network and hierarchical porous structure. Meanwhile, EG can effectively prevent the structural collapse and aggregation of Metal-Organic Framework (MOF) derivatives. The morphology and thermal properties of composite PCMs were analyzed with SEM, XRD, FTIR, DSC, TG, and DTG. The melting/solidifying temperatures and corresponding latent heats of composite PCM PA@ZnO/EG-6% are 60.38 °C and 58.46 °C, and 203.35 kJ/kg and 207.87 kJ/kg. Thermal conductivity of the composite PCM PA@ZnO/EG-6% increases by 137.5% than that of PA. The DTG results indicated the composite PCM has superior thermal stability. All test results suggested that this composite is a good PCM and has excellent potential in heat storage due to its excellent thermal properties, good thermal stability, and reliability.

Keywords: Latent thermal energy storage; Palmitic acid; ZnO; Expanded graphite; Thermal conductivity (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221032217
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:242:y:2022:i:c:s0360544221032217

DOI: 10.1016/j.energy.2021.122972

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:242:y:2022:i:c:s0360544221032217