EconPapers    
Economics at your fingertips  
 

Forced convective heat transfer in optimized kelvin cells to enhance overall performance

Mingrui Sun, Lunxiang Zhang, Chengzhi Hu, Jiafei Zhao, Dawei Tang and Yongchen Song

Energy, 2022, vol. 242, issue C

Abstract: The optimization of pore structure for metal foam is considered a feasible approach for improving the overall heat transfer performance. Thus, we numerically investigated Kelvin cells with different throat areas and structures (elliptical Kelvin cell (EKC)) to characterize the influence on pressure drop and heat transfer coefficient using FLUENT 18.0. The standard k–ε model exhibited a better agreement with experimental data and required less time to achieve convergence. The results revealed that the throat area could not feasibly optimize the overall heat transfer performance. Moreover, the area goodness factor j/f that considered the influences of both heat transfer coefficient and pressure drop on the overall heat transfer performance of EKC with the higher than conventional Kelvin cell. Based on comparative analysis between pressure, velocity, turbulence kinetic energy, and temperature distribution, increasing the space and decreasing the angle between the skeleton and flow direction caused a significant pressure drop in the EKC samples. Owing to the existence of a lower temperature area at the leeward of skeletons and a small difference of impingement cooling on windward skeletons, the reduction of HTC was acceptable. Therefore, the EKC exhibited immense potential for enhancing the design of heat transfer devices.

Keywords: Forced convection; Heat transfer coefficient; Pressure drop; Overall heat transfer performance; Kelvin cell; Optimization (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221032448
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:242:y:2022:i:c:s0360544221032448

DOI: 10.1016/j.energy.2021.122995

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:242:y:2022:i:c:s0360544221032448