EconPapers    
Economics at your fingertips  
 

Statistical assessment of operational parameters using optimized sulphonated titanium nanotubes incorporated sulphonated polystyrene ethylene butylene polystyrene nanocomposite membrane for efficient electricity generation in microbial fuel cell

Moogambigai Sugumar and Sangeetha Dharmalingam

Energy, 2022, vol. 242, issue C

Abstract: Sulphonated Polystyrene Ethylene Butylene Polystyrene (SPSEBS) mixed with different weight percentages (2, 4, 6 and 8%) of synthesized Sulphonated Titanium Nanotubes (STNT) to prepare proton exchange membranes (PEM). The membrane properties confirms that SPSEBS +6% STNT exhibits higher water uptake, ion exchange capacity and proton conductivity when compared to certain previously reported membranes thereby suggesting better suitability for fuel cell performance. In present study, three operational parameters were investigated using optimized SPSEBS +6% STNT as PEM for better performance in MFC by adopting Box Behnken design. RSM results reveal that STAT 15 with acetate as substrate, 1000 Ω external resistance and 0.3% catalyst loading rate exhibits a maximum power density of 138 mW/m2. Thus, the synthesized and characterized nanocomposite membranes pose potentials in the fabricated tubular MFC design for enhanced power production. In addition, a regression equation for selected operational parameters for enhanced electricity generation in MFC has been proposed.

Keywords: Cation exchange membrane; Sewage water; Microbial fuel cell; Response surface methodology; Sulphonated titanium nanotubes; Tubular MFC (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221032497
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:242:y:2022:i:c:s0360544221032497

DOI: 10.1016/j.energy.2021.123000

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:242:y:2022:i:c:s0360544221032497