Strain characteristics and energy dissipation laws of gas-bearing coal during impact fracture process
Xiangguo Kong,
Di He,
Xianfeng Liu,
Enyuan Wang,
Shugang Li,
Ting Liu,
Pengfei Ji,
Daiyu Deng and
Songrui Yang
Energy, 2022, vol. 242, issue C
Abstract:
To reveal fracture mechanism of gas-bearing coal subjected to complex geology environment, the impact dynamics experiments were conducted to study energy characteristics based on split Hopkinson pressure bar (SHPB) system. The incident, reflected and transmission strain were collected to calculate various energy. It was found reflected strain was always larger than transmission strain. Therefore, the reflected energy was generally higher than transmission energy under different loading conditions, but they were smaller than incident energy. With time evolution, both elastic deformation and dissipative energy experienced slow increase, rapid increase, peak point and decrease stage regardless of loading conditions. Before macro failure, micro-meso fractures had changed drasticly, which also involved intense energy conversion. So dissipative energy peak was earlier than that of elastic deformation energy. Due to pre-damage of static load and weakening effects of gas, the dissipative energy decreased with their increases (static load from 2.00 to 9.00 MPa and gas pressure from 0.25 to 1.50 MPa) during impact fracture process. However, at high confining pressure and dynamic load environment, the impact failure of gas-bearing coal exhausted massive energy. These energy characteristics will provide guidances to prevent and control disaster during coal mining and coal seam gas (CSG) exploitation in deep area.
Keywords: Energy characteristics; Gas-bearing coal; Dynamic fracture; Dissipation mechanism (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221032771
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:242:y:2022:i:c:s0360544221032771
DOI: 10.1016/j.energy.2021.123028
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().