EconPapers    
Economics at your fingertips  
 

Online quantitative diagnosis of internal short circuit for lithium-ion batteries using incremental capacity method

Dongdong Qiao, Xueyuan Wang, Xin Lai, Yuejiu Zheng, Xuezhe Wei and Haifeng Dai

Energy, 2022, vol. 243, issue C

Abstract: Early internal short circuit (ISC) diagnosis is critical for a battery management system (BMS) to prevent the thermal runaway of lithium-ion batteries. However, it is difficult to be diagnosed owing to few obvious electric and thermoelectric characteristics in the early stage of ISC. In this study, a novel ISC diagnosis method based on the incremental capacity (IC) curves is proposed. Different charging rates on four ISC situations are carried out on a cell to verify the proposed method. The leakage current of the ISC battery can be obtained by the area difference between the normal cell and the ISC cell, and it can be converted into the ISC resistance. The experiments of different initial charging states of charge (SOC) in a series-connected battery pack are conducted to verify the method in the real EVs working environment. The diagnosis results of the battery cell and battery pack indicate the proposed method is feasible and effective to quantitatively diagnose the ISC.

Keywords: Lithium-ion batteries; Electric vehicles; Internal short circuit; Diagnosis; Incremental capacity (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221033314
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:243:y:2022:i:c:s0360544221033314

DOI: 10.1016/j.energy.2021.123082

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:243:y:2022:i:c:s0360544221033314