EconPapers    
Economics at your fingertips  
 

Degradation trajectories prognosis for PEM fuel cell systems based on Gaussian process regression

Huiwen Deng, Weihao Hu, Di Cao, Weirong Chen, Qi Huang, Zhe Chen and Frede Blaabjerg

Energy, 2022, vol. 244, issue PA

Abstract: The aging trajectory prognosis is an effective tool to prolong the lifespan and lower the cost of proton exchange membrane fuel cell (PEMFC) systems. In this paper, Gaussian process regression modeling frameworks based on sparse pseudo-input Gaussian process (SPGP) and variational auto-encoded deep Gaussian process (VAE-DGP) are proposed to predict the degradation trend and cope with model uncertainty for PEMFCs. The optimal hyper parameters and pseudo-input locations are obtained with conjugate gradient by maximizing the marginal likelihood. Besides, the variational parameters and closed-form variational lower bound are optimized through variable inference, radial basis function (RBF) kernel is utilized to determine the priori distribution of Gaussian process. Then stack voltage and output power are extracted as health indicators (HIs). To fully demonstrate the prediction performance, long-term experimental validation with static and dynamic aging tests are performed, single-input and multi-input structures are respectively constructed in SPGP and VAE-DGP for comparison with the existing models. The results show that the proposed methods outperform other data-driven methods, moreover, SPGP is more suitable for large data regime and VAE-DGP operates better with small data regime. Finally, the performance evolution is presented with 95% confidence interval to validate the mapping accuracy and reliability further.

Keywords: Proton exchange membrane fuel cells (PEMFCs); Sparse pseudo-input Gaussian process (SPGP); Variational auto-encoded deep Gaussian process (VAE-DGP); Data-driven model; Degradation prognosis (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221028188
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:244:y:2022:i:pa:s0360544221028188

DOI: 10.1016/j.energy.2021.122569

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:244:y:2022:i:pa:s0360544221028188