EconPapers    
Economics at your fingertips  
 

Data-driven modeling for long-term electricity price forecasting

Paolo Gabrielli, Moritz Wüthrich, Steffen Blume and Giovanni Sansavini

Energy, 2022, vol. 244, issue PB

Abstract: Estimating the financial viability of renewable energy investments requires the availability of long-term, finely-resolved electricity prices over the investment lifespan. This entails, however, two major challenges: (i) the combination of extensive time horizons and fine time resolutions, and (ii) the prediction of out-of-sample electricity prices in future energy and market scenarios, or shifts in pricing regime, that were not observed in the past. This paper tackles such challenges by proposing a data-driven model for the long-term prediction of electricity market prices that is based on Fourier analysis. The electricity price is decomposed into components leading to its base evolution, which are described through the amplitudes of the main frequencies of the Fourier series, and components leading to high price volatility, which are described by the residual frequencies. The former are predicted via a regression model that uses as input annual values of relevant energy and market quantities, such as electricity generation, prices and demands. The proposed method shows capable of (i) predicting the most relevant dynamics of the electricity price; (ii) generalization by capturing the market mechanisms of previously unseen electricity markets. These findings support the relevance and validity of data-driven, finely-resolved, long-term predictions and highlight the potential for hybrid data-driven and market-based models.

Keywords: Electricity markets; Price forecasting; Renewable energy; Regression models; Fourier analysis; Data analysis (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422200010X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:244:y:2022:i:pb:s036054422200010x

DOI: 10.1016/j.energy.2022.123107

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:244:y:2022:i:pb:s036054422200010x