Combined heat and power economic emission dispatch using improved bare-bone multi-objective particle swarm optimization
Guojiang Xiong,
Maohang Shuai and
Xiao Hu
Energy, 2022, vol. 244, issue PB
Abstract:
An improved bare-bone multi-objective particle swarm optimization (IBBMOPSO) is proposed to solve the combined heat and power economic emission dispatch problems. To conquer the population diversity deficiency and premature convergence of bare-bone particle swarm optimization, IBBMOPSO integrates four improved strategies, that is, (i) a non-linear adaptive particle updating strategy is presented to automatically tune the weights of the personal best position (pbest) and the global best position (gbest), and to shrink the standard deviation for generating new particles; (ii) an improved strategy by comparing the sparsity of the pbest and the target particle instead of the domination is proposed to update the pbest; (iii) an improved strategy by selecting a random Pareto optimal solution from a newly filtered subset of the external archive is designed to determine the gbest for each target particle; and (iv) a modified strategy by combining the slope and the crowding distance is presented to determine the Pareto optimal frontier. IBBMOPSO is firstly validated by nine multi-objective benchmark test functions. Then, it is then applied to three test systems and the simulation results demonstrate that IBBMOPSO can achieve higher-quality dispatching schemes with lower generating fuel cost and less pollutant gas emission compared with other algorithms.
Keywords: Combined heat and power system; Economic environment dispatch; Multi-objective optimization; Particle swarm optimization (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222000111
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222000111
DOI: 10.1016/j.energy.2022.123108
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().