Experimental and numerical studies on the thermal and electrical performance of a CdTe ventilated window integrated with vacuum glazing
Chengyan Zhang,
Jie Ji,
Chuyao Wang,
Wei Ke,
Hao Xie and
Bendong Yu
Energy, 2022, vol. 244, issue PB
Abstract:
The application of PV double skin ventilated windows (PV-DSV) can reduce intense sunlight from entering room and meantime lower the cell temperature. Vacuum glazing is superior in thermal insulation. To further strengthen the thermal insulation of the PV-DSV, this paper proposes an integrated vacuum glazing with PV double-skin ventilated window (VPV-DSV), which employs the CdTe PV glazing and the vacuum glazing as the front and back glazings. Thermal and electrical performance of the VPV-DSV was investigated and compared with the PV vacuum insulating glazing unit (VPV-IGU) through experiment and simulation. Comparison of PV-DSV with different types of back glazing was made to explore the influence of back glazing types in PV-DSV. Furthermore, influence of the window design factors was explored. Results indicated that the use of vacuum glazing improved the thermal insulation of PV-DSV and resulted in 59.8% reduction of the U-value. VPV-DSV reduced more cooling load, but VPV-IGU outperformed VPV-DSV in thermal insulation. Owing to a small temperature coefficient of the CdTe cell, their power output was similar. In addition, the WWR and PV coverage had more obvious impacts on the performance of VPV-DSV than the emissivity of low-e coating.
Keywords: PV window; Vacuum glazing; Ventilated window; Cadmium telluride cells; BIPV/T (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222000317
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222000317
DOI: 10.1016/j.energy.2022.123128
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().