EconPapers    
Economics at your fingertips  
 

Study on the characteristics of hydrate formation in HSB solution: Focused on the micro-morphologies

Zhiming Liu, Yuxing Li, Wuchang Wang, Guangchun Song, Xinran Yu, Zhigang Li, Honghong Wang, Wensheng Xiao and Hongyan Wang

Energy, 2022, vol. 244, issue PB

Abstract: Hydrate formation could be promoted by the surfactant solutions significantly, so the study of its characteristics is helpful to the industrial application of hydrate-based technologies. In this study, using Alkyl C16-18 hydroxypropyl sulfobetaine (HSB1618) solution, the hydrate formation in the liquid film, on the gas bubble surface were investigated, and the micro process of the liquid phase migration between the hydrate particles was intuitively exhibited. The mechanisms of the hydrate particle burst and the presence of concentric lines were proposed. The results showed that on the reactor wall, hydrate spots were formed in the liquid film, the liquid phase could migrate upward through the pores inside the hydrate spots under the capillary force to sustain the further hydrate growth. When the hydrate particles were initially formed, they were hexagonal pyramid-shaped and with their vertex towards the liquid phase, with the hydrate particles grew bigger, they burst into fragments, then the hydrate film was observed to be formed by the tight aggregation, thickening, and growth of the fragments in the liquid film. The heterogeneous nucleation could reduce the energy barrier for the hydrate formation, which facilitated the hydrate formation on the reactor wall.

Keywords: Hydrate particles; Liquid film; Gas bubbles; Liquid immigration; Heterogeneous nucleation; Micro-morphologies (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222000524
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222000524

DOI: 10.1016/j.energy.2022.123149

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222000524