Thermodynamic analysis of novel ejector-assisted vapour absorption-resorption refrigeration systems
Anil Kumar and
Anish Modi
Energy, 2022, vol. 244, issue PB
Abstract:
The vapour absorption-resorption refrigeration system (VARS) can supply cooling and heating at lower operating pressure than the conventional vapour absorption refrigeration system. In this study, three novel configurations of the ejector-assisted ammonia-water VARS are proposed in which an ejector is integrated to replace the throttle valve. The three novel configurations are classified on the basis of the secondary flow to the ejector and are termed as the first configuration (C1), the second configuration (C2), and the third configuration (C3). The coefficient of performance (COP) of the proposed configurations is calculated and compared with that of the conventional VARS. For a constant high-pressure, the low-pressure is varied in the feasible range to demonstrate the effect of different pressure ratios on the COP, mass fraction gradients, generator circulation ratio, and heat inputs. In order to study the effect of operating parameters, the COP of the proposed novel configurations is evaluated at different desorber and generator operating temperatures. The results indicate that the proposed novel configurations have higher COP than the conventional VARS and the configuration C3 has the highest COP among the proposed configurations. At a resorber pressure of 6 bar, the configuration C3 achieves 15% higher COP than the conventional VARS.
Keywords: Thermodynamic analysis; Ejector; Absorption-resorption; Ammonia-water; Refrigeration system (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222000573
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222000573
DOI: 10.1016/j.energy.2022.123154
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().