EconPapers    
Economics at your fingertips  
 

Thermal evolution of chemical structure and mechanism of oil sands bitumen

Zhichao Wang, Qing Wang, Chunxia Jia and Jingru Bai

Energy, 2022, vol. 244, issue PB

Abstract: Oil sands bitumen (OSB) is the key component of extracted oil sands, thus further investigation of the mechanism of OSB pyrolysis reaction would be helpful for the development and application of oil sands pyrolysis process. First, chemical structure parameters and thermogravimetric (TG) behavior of OSB were experimentally investigated by 13C NMR spectroscopy and TG analysis, respectively, to initially evaluate the correlation between chemical structure parameters and pyrolytic behavior. Further, the ATR–FTIR spectroscopy technology was used to experimentally characterize and calculate the structural parameters of OSB at different pyrolysis final temperatures, and the main thermal evolution rules of different functional groups during the pyrolysis reaction were obtained. Based on this result and by using the model fitting method, the pyrolysis of OSB was found to be a parallel reaction. Moreover, the kinetic calculation results obtained by Straink method and distributed activated energy model method also supported this result. The correlation between chemical structure parameters and activation energy was analyzed, and it was found that the degree of aromatization Y-factor could be used to characterize the pyrolysis reaction activity. Finally, this study proposed a simplified mechanistic model of chemical structure evolution during OSB pyrolysis.

Keywords: Oil sands bitumen; Chemical structure evolution; Pyrolysis kinetic analysis; Pyrolysis mechanism (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222000937
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222000937

DOI: 10.1016/j.energy.2022.123190

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222000937