EconPapers    
Economics at your fingertips  
 

Optimization of bio-crude yield and its calorific value from hydrothermal liquefaction of bagasse using methanol as co-solvent

A. Yerrayya, A. Nikunj, P. Francis Prashanth, S.R. Chakravarthy, Upendra Natarajan and R. Vinu

Energy, 2022, vol. 244, issue PB

Abstract: Hydrothermal liquefaction is a promising resource recovery technique to valorize wet lignocellulosic agro residues. In this study, hydrothermal liquefaction of bagasse was performed at different temperatures (280, 300, 320 °C), reaction times (15, 30, 45 min), and amount of KOH catalyst (5, 7.5, 10 wt%) in the presence of methanol as a co-solvent. The process conditions were optimized using response surface methodology to maximize the yield of bio-crude and its higher heating value (HHV). Maximum bio-crude yield of 36.3 wt% was obtained at 320 °C, 15 min and 10 wt% KOH. The bio-crude yield was found to depend on temperature, amount of KOH, and the interaction of reaction time and amount of KOH. Maximum HHV of bio-crude (34.6 MJ kg−1) was recorded at 320 °C, 45 min and 10 wt% KOH, and this condition corresponded to highest deoxygenation achieved in the bio-crude. The major organic constituents in the bio-crude were cyclo-oxygenates, phenolics, and esters, and their combined selectivity was 78–83%. Maximum energy recovery of 56% was obtained. The energy content of the solid residue was high (∼23 MJ kg−1) at the center point corresponding to 300 °C, 30 min and 7.5 wt% KOH. The process exhibited positive energy gain with favorable sustainability metrics.

Keywords: Bagasse; Hydrothermal liquefaction; Bio-crude; Factorial design; Optimization; Energy recovery (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222000950
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222000950

DOI: 10.1016/j.energy.2022.123192

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222000950