Performance analysis of double effect solar absorption cooling system with different schemes of hot/cold auxiliary integration and parallel-serial arrangement of solar field
Muhammad Zeeshan Siddique,
Abdul Waheed Badar,
M. Salman Siddiqui,
Fahad Sarfraz Butt,
Muhammad Saleem,
Khalid Mahmood and
Imran Fazal
Energy, 2022, vol. 245, issue C
Abstract:
Energy consumption of heating and/or cooling auxiliary devices in solar sorption cooling systems is one of the major factors of reduction in primary energy savings. This work simulates and analyzes the dynamic operation of a solar thermal double effect absorption cooling system for three strategies of employing hot and/or cold auxiliary devices and the influence of instituting the entire solar collector field in series versus parallel arrangement. An auxiliary heater is installed in the hot storage to absorption chiller loop in configuration-1 (C-1) to maintain the desired generator temperature. An auxiliary cooler is employed in configuration-2 (C-2) to furnish the cooling load in conjunction with an absorption chiller energized only by the evacuated tube solar collector (ETC). In configuration-3 (C-3) both auxiliary heater in the storage to chiller loop and auxiliary cooler in the chiller to load loop are modeled for three percentage contributions of the required cooling load by the double effect absorption and water-cooled vapor compression chiller i.e., 50-50 (C-3a), 70–30 (C-3b), and 30–70 (C-3c), respectively. Simulation results demonstrated that at lower collector areas C-2 resulted in considerably higher primary energy savings (∼58%) and solar fraction (∼14.4%) in comparison to C-1 and C-3. The serial connection of the entire solar field resulted in better primary energy savings in C-2 while for C-1 and C-3 parallel arrangement gave rise to higher primary energy savings than the serial arrangement.
Keywords: Absorption cooling; Transient simulations; Auxiliary heater/cooler; Collector serial-parallel arrangements; Primary energy savings (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422200202X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:245:y:2022:i:c:s036054422200202x
DOI: 10.1016/j.energy.2022.123299
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().