EconPapers    
Economics at your fingertips  
 

Design optimization of the solar heating system for office buildings based on life cycle cost in Qinghai-Tibet plateau of China

Yanfeng Liu, Yiting Zhao, Yaowen Chen, Dengjia Wang, Yong Li and Xipeng Yuan

Energy, 2022, vol. 246, issue C

Abstract: The Qinghai-Tibet Plateau is rich in solar energy resources (SER), and the operation conditions of office buildings are consistent with the daily fluctuations in solar radiation. Solar heating for office buildings on the plateau has great potential. To obtain the optimal capacity ratio of solar heating system (SHS) for office buildings in plateau area, an optimization model of SHS capacity matching was established. The minimum life cycle cost (LCC) was taken as the objective function, and collector area, tank volume and auxiliary heat source (AHS) power as the decision variables in the model. The Qinghai-Tibet plateau was divided into five typical regions, and optimization was carried out for each region. The results show that the system LCC optimized by the intermittent heating load is 12% lower than that calculated by the average intermittent heating load and 44% lower than that calculated by the average parameter method for Lhasa. From an economic perspective, the AHS is suitable for electric boilers or gas boilers in regions with rich or general SER and cold regions with abundant SER. The AHS is suitable for electric boilers, air source heat pumps, or gas boilers in severely cold regions with abundant SER.

Keywords: Qinghai-Tibet Plateau; Office buildings; Solar heating system; Optimal capacity ratio; Minimum life cycle cost (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222001918
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:246:y:2022:i:c:s0360544222001918

DOI: 10.1016/j.energy.2022.123288

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:246:y:2022:i:c:s0360544222001918