Thermal performance and thermal stress analysis of a supercritical CO2 solar conical receiver under different flow directions
Yuxuan Chen,
Ding Wang,
Chongzhe Zou,
Wei Gao and
Yanping Zhang
Energy, 2022, vol. 246, issue C
Abstract:
To ensure the safe and efficient operation of the receiver in the concentrated solar power system, it is necessary to study its performance characteristics. Different from considering the thermal performance alone, this study comprehensively analyzed the thermal and mechanical performance of the solar receiver by using a coupled thermal-mechanical model. The critical factors including geometric parameters (aspect ratio H/D and angle ratio φ/φmax), operation parameters (mass flow rate, inlet temperature and direct normal irradiance (DNI)) and flow directions (up-flow and down-flow) were investigated. The results demonstrated that the optimum thermal efficiency achieved 85.67% when H/D = 1.5 and φ/φmax = 0.25, and the maximal thermal stress was 87.61 MPa. Increasing the flow rate from 0.01 kg/s to 0.06 kg/s improved the thermal performance, but increased the thermal stress. An opposite trend was observed when the inlet temperature increased from 573 K to 773 K. As the DNI increased from 200 W/m2 to 1000 W/m2, the maximal thermal stress increased by approximately 3 times, when the DNI >800 W/m2, the thermal performance would be deteriorated. Although the thermal performance under up-flow was better, the thermal stress was greater, the receiver should adopt an up-flow flow direction.
Keywords: Solar receiver; Geometric parameters; Operation parameters; Flow direction; Thermal performance; Thermal stress (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422200247X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:246:y:2022:i:c:s036054422200247x
DOI: 10.1016/j.energy.2022.123344
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().