How heterogeneous technological progress promotes industrial structure upgrading and industrial carbon efficiency? Evidence from China's industries
Jianmin You and
Wei Zhang
Energy, 2022, vol. 247, issue C
Abstract:
The bottleneck of China's industrial carbon efficiency improvement is that the contribution of carbon emission technology is less than that of energy technology, and that of neutral technology is less than that of capital-based technology. The key to breaking through this bottleneck is to clarify how heterogeneous technological progress enhances carbon efficiency through industrial structural upgrading. The effects of four levels of technological progress on carbon efficiency under two technical classifications based on technology sources and carbon emission processes from energy consumption are studied by using the DEA method. The suitable choice of the path of technological progress to promoting China's industrial carbon efficiency is provided accordingly. The panel data model is used to deeply investigate the effects of these four levels of technological progress on industrial carbon efficiency in China's 30 provincial industries. The main results are as follows: First, in terms of direct effects, progress in energy technology is more conducive to improving carbon efficiency than progress in carbon emission technology, and progress in neutral technology is more effective in improving carbon efficiency than progress in capital-embodied technology. Second, in terms of indirect effects, progress in capital-embodied technology is effective in upgrading industrial structures and enhancing carbon efficiency; and, through green upgrading of industrial structures, progress in energy technology has a positive and significant impact on carbon efficiency. Third, the level of industrial development and government environmental governance have a positive impact on carbon efficiency, and the energy structure has a negative impact on carbon efficiency.
Keywords: Neutral technological progress; Capital-embodied technological progress; Energy technological progress; Carbon emission technological progress; Carbon efficiency (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222002894
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:247:y:2022:i:c:s0360544222002894
DOI: 10.1016/j.energy.2022.123386
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().