Effect of hydrothermal pretreatment on deashing and pyrolysis characteristics of bamboo shoot shells
Qi Gao,
Liangmeng Ni,
Yuyu He,
Yanmei Hou,
Wanhe Hu and
Zhijia Liu
Energy, 2022, vol. 247, issue C
Abstract:
Bamboo shoot shells (BSS) were treated at hydrothermal temperatures of 160 °C, 180 °C, and 200 °C with residence times of 6 h, 8 h, and 10 h. The variation of ash-forming elements and the influence of deashing behavior on fuel and pyrolysis characteristics of BSS hydrochars were originally investigated during hydrothermal pretreatment (HTP) process. The results showed that HTP decreased 53.82–64.00% of BSS ash because 95.2–96.5% of K, 61.3–82.1% of Mg, 22.0–39.2% of Al, 23.7–51.8% of Fe, and 28.8–43.6% of Ca were removed. This improved fusion characteristics of BSS ash and reduced the risk of deposition, slagging and scaling. With increase in hydrothermal temperatures and residence times, the contents of fixed carbon, C, and high heating value of BSS hydrochars increased, while the contents of volatiles and O decreased. HTP shifted pyrolysis process of BSS to high temperature zone, and increased their activation energy and the amount of all gaseous products, including CO groups, C–O–C groups, alkyls, H2O, and CO. In conclusion, HTP is helpful for BSS to be used as feedstocks of bioenergy and biomaterials due to decrease of ash contents and improvement of thermal stability.
Keywords: Bamboo shoot shells; Hydrothermal pretreatment; Deashing; Pyrolysis; Gaseous products (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222004133
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:247:y:2022:i:c:s0360544222004133
DOI: 10.1016/j.energy.2022.123510
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().