Development of thermo–electrical loss model for photovoltaic module with inhomogeneous temperature
Xun Ma,
Ming Li,
Ye Peng,
Linyao Sun and
Chuangye Chen
Energy, 2022, vol. 248, issue C
Abstract:
Accurate, efficient, and reliable measurements of solar photovoltaic (PV) modules are essential for the evaluation and diagnosis of the actual operating status of PV plants. However, current online measurements and extraction models are limited because they do not account for power losses caused by inhomogeneous thermal performance of photovoltaic modules. Accordingly, this paper develops a coupled thermo–electrical loss model to access the power generation, energy losses, and degradation rate of photovoltaic modules with inhomogeneous temperature under actual operating conditions. The experiments indicate that the temperature coefficient of power dissipation and efficiency for solar cells with uneven temperature distribution PV modules are within −0.68W/oC to −0.83 W/°C and −0.46%/oC to −5.81%/oC, respectively. Additionally, the relative error values for the maximum power range from −2.54% to 4.09%, demonstrating the feasibility of the proposed model for predicting the power output behavior of operating PV modules with inhomogeneous temperature distributions. Furthermore, the daily performances of the modules indicate heat and electricity losses ranging from 0.245 kWh to 0.337 kWh, while the ratios of electrical energy dissipation to daily losses vary from 36% to 50%. To ensure the reliability of measuring degradation rates, the solar irradiance thresholds of PV module performance tests are nearly 632W/m2, 781W/m2, 875W/m2, and 875W/m2, respectively. Finally, for the long-term performance valuation, the levelized costs of electricity increase by approximately 0.011 CNY/kWh for every 5% reduction in annual power generation, and the PBP is extended by 4.81yr, 4.22yr, 3.62yr, and 7.10yr, respectively.
Keywords: Maximum power losses; Inhomogeneous temperature; Infrared thermography; Photovoltaic module; Degradation rate (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222004455
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:248:y:2022:i:c:s0360544222004455
DOI: 10.1016/j.energy.2022.123542
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().