Combustion properties of upgraded alternative biomasses by washing and steam explosion for complete coal replacement in coal-designed power plant applications
Pedro Abelha,
Simon Leiser,
Jan R. Pels and
Mariusz K. Cieplik
Energy, 2022, vol. 248, issue C
Abstract:
To demonstrate the benefits of upgrading biomass, six samples of unique materials were combusted under pulverized fuel conditions aiming at the demonstration of complete coal replacement. These fuels were: sugarcane bagasse (SCB) (raw and steam exploded); sugarcane trash (SCT) (steam exploded and washed + steam exploded); empty fruit bunch (steam exploded and washed + steam exploded). The study shows that volatiles dominate the NOX formation, thus with a proper air staging all upgraded biofuels can be used to reduce directly NOX formation, when replacing coal. Washing reduces slagging issues by removing most of K, however, in the case of the sugarcane based biofuels, Fe still plays a crucial role in the melting/slag behavior. The combustion of raw bagasse and steam exploded bagasse formed relatively low amounts of aerosols, nevertheless enriched in NaCl and KCl, which poses a potential operational/corrosion risk when deposited on heat-exchanger surfaces. For SCT and EFB, washing is essential to reduce the aerosol formation, e.g. for EFB the submicron-particle mass was reduced by more than 90% and the fouling decreased proportionally by a factor of 10. Without washing unacceptably high slagging, fouling and corrosion potentials were observed with the steam exploded EFB.
Keywords: Biomass upgrading; Steam explosion; Washing; Slagging; Fouling; Combustion (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222004492
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:248:y:2022:i:c:s0360544222004492
DOI: 10.1016/j.energy.2022.123546
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().