EconPapers    
Economics at your fingertips  
 

Thermogravimetric and kinetic study of thermal degradation of various types of municipal solid waste (MSW) under N2, CO2 and oxy-fuel conditions

Paulina Wienchol, Agnieszka Korus, Andrzej Szlęk and Mario Ditaranto

Energy, 2022, vol. 248, issue C

Abstract: Oxy-fuel combustion is one carbon capture and sequestration (CCS) technique that uses both O2 and recirculated flue gas as an oxidiser. As a result, the produced gas is composed mainly of CO2 and H2O, which makes its sequestration more cost-effective. Changing the atmosphere from N2 to CO2 affects combustion behaviour. To study the impact of the atmosphere on the combustion process, the thermal degradation of representative types of municipal solid waste (MSW) under N2, CO2, and O2/CO2 atmospheres was analysed using a thermogravimetric (TG) instrument. Nonisothermal degradation experiments were conducted, and three heating rates were examined. Isoconversional methods were employed to determine kinetic data. Comparing N2 and CO2 atmospheres, it was found that below 600 °C, the shape of TG curves was not affected significantly. However, above 600 °C under CO2 atmosphere, a second peak appeared, which indicated gasification reactions of the char with carbon dioxide. In the presence of oxygen, the second peak was shifted to lower temperatures, indicating that thermal decomposition with O2 was more rapid. The reported kinetic parameters provide fundamental information on the conversion of solid waste. Thus, they are essential for designing chambers dedicated to the oxy-combustion of waste.

Keywords: Oxy-fuel combustion; MSW; Thermogravimetric analysis; Kinetic analysis; Isoconversional methods (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222004765
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:248:y:2022:i:c:s0360544222004765

DOI: 10.1016/j.energy.2022.123573

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:248:y:2022:i:c:s0360544222004765