EconPapers    
Economics at your fingertips  
 

Offshore wind speed short-term forecasting based on a hybrid method: Swarm decomposition and meta-extreme learning machine

Emrah Dokur, Nuh Erdogan, Mahdi Ebrahimi Salari, Cihan Karakuzu and Jimmy Murphy

Energy, 2022, vol. 248, issue C

Abstract: As the share of global offshore wind energy in the electricity generation portfolio is rapidly increasing, the grid integration of large-scale offshore wind farms is becoming of interest. Due to the intermittency of wind, the stability of power systems is challenging. Therefore, accurate and fast offshore short-term wind speed forecasting tools play important role in maintaining reliability and safe operation of the power system. This paper proposes a novel hybrid offshore wind forecasting model based on swarm decomposition (SWD) and meta-extreme learning machine (Meta-ELM). This approach combines the advantages of SWD which has proven efficiency for non-stationary signals, with Meta-ELM which provides faster calculation with a lower computational burden. In order to enhance accuracy and stability, the signal is decomposed by implementing a swarm-prey hunting algorithm in SWD. To validate the model, a comparison against four conventional and state-of-the-art hybrid models is performed. The implemented models are tested on two real wind datasets. The results demonstrate that the proposed model outperforms the counterparts for all performance metrics considered. The proposed hybrid approach can also improve the performance of the Meta-ELM model as a well-known and robust method.

Keywords: Offshore wind energy; Wind speed forecasting; Swarm decomposition; Meta extreme learning machine (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222004984
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:248:y:2022:i:c:s0360544222004984

DOI: 10.1016/j.energy.2022.123595

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:248:y:2022:i:c:s0360544222004984