EconPapers    
Economics at your fingertips  
 

Characteristics of thermal stratification and its effects on HVAC energy consumption for an atrium building in south China

Baolian Dai, Yan Tong, Qi Hu and Zheng Chen

Energy, 2022, vol. 249, issue C

Abstract: More and more public buildings have functional zones without physical partitioning, and non-uniform thermal environments often exist inside it. Understanding this phenomenon and its influences on HVAC energy consumption is of great significance. Field measurements were carried out on a transport station in Nanjing, South China during daytimes, and thermal stratifications were found to be evident in the non-air-conditioned atrium with the linear gradients being range of 0.06–2.0 °C/m. An energy model coupled with CFD model is developed and verified by measured data. Further simulations are performed under cases of atrium height, glazed-roof material and season. The results show that the CFD simulated convective heat transfer coefficients of inner surfaces (CHTCIS) of the atrium vary according to scenario; linear temperature gradients differ by cases, and specifically there are two gradients in hot summer with the dimensionless interface heights being approximately 0.56–0.6; the HVAC loads of the air-conditioned zones are estimated to be 115–146 W/m2 when adopting thermal stratification and user-defined CHTCIS, and larger than that when no thermal stratification and built-in CHTCIS. The double low-e 6 mm plane glass contributes to the most favorable temperatures in both cold winter and hot summer, followed by the smallest HVAC loads.

Keywords: Atrium; Glazed roof; Thermal stratification; Energy model; CFD model; HVAC load (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222003280
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:249:y:2022:i:c:s0360544222003280

DOI: 10.1016/j.energy.2022.123425

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:249:y:2022:i:c:s0360544222003280