Ultra-stable silica/exfoliated graphite encapsulated n-hexacosane phase change nanocomposite: A promising material for thermal energy storage applications
Sakshum Khanna,
Sagar Paneliya,
Parth Prajapati,
Indrajit Mukhopadhyay and
Hussam Jouhara
Energy, 2022, vol. 250, issue C
Abstract:
In the current work, we demonstrate a simple, versatile, and scalable approach to synthesized silica encapsulated phase-change material (n-hexacosane) loaded between exfoliated-graphite nanosheets (ESPCM) by a chemical process (sol-gel and hydrothermal technique), exhibiting ultra-high thermal stability. The morphological, structural, and chemical properties of synthesized nanocomposite materials were investigated, and the results revealed that the PCM encapsulated within the silica shell was of diameters 120–220 nm and loaded in porous dendritic structures without any chemical reactions in phase change material. Further, the thermophysical properties such as latent heat, thermal conductivity, and stability of synthesized nanocomposites (ESPCM) were investigated by differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA). During melting and solidification cycles, a solid-liquid phase transition of ESPCM nanocomposite was observed at 57.9 °C and 48.1 °C with a latent heat of 126.7 J/g and 117.6 J/g respectively. The ESPCM composites exhibited high thermal conductivity (15.74 W/m K) and ultra-high stability against thermal degradation after 300 thermal cycles. Subsequently, COMSOL simulations were carried out to investigate the thermal performance (heat flow with respect to time) of ESPCM, where, on increasing the EG concentration in the nanocomposite, an enhanced heat flow process was observed.
Keywords: Phase change material; n-hexacosane; Nanocomposite; Thermal stability (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222006326
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:250:y:2022:i:c:s0360544222006326
DOI: 10.1016/j.energy.2022.123729
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().