Flexible operation of a mixed fluid cascade LNG plant for electrical power management
Ivan Ying Xuan,
Charlotte Skourup,
Jørgen B. Jensen,
Trond Haugen and
Nina F. Thornhill
Energy, 2022, vol. 250, issue C
Abstract:
The paper discusses operation and control of a process for the liquefaction of natural gas in which the refrigeration compressors are driven by electric motors. The aim is to enable the plant to accommodate contingencies in the availability of electrical power and to continue running when there is a shortage of electrical power, avoiding the significant economic impact of a shutdown. The article provides a detailed first principles analysis of the relationships between the electrical power consumption of the process, the production rate of the liquefied natural gas, its exit temperature, and its purity. By doing this, it is possible to ascertain settings for operating the process at various levels of power consumption. The results show that the process can operate with reductions of electrical power of 30% or more. Hence, power shortages could be managed by operating the process flexibly to make best use of the available remaining power, rather than by shutting down. The paper also discusses how such a system could be implemented industrially and identifies aspects that require further study.
Keywords: Electrical power management; Flexible operation; Liquefied natural gas; Load shedding (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222006971
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:250:y:2022:i:c:s0360544222006971
DOI: 10.1016/j.energy.2022.123794
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().